If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+2t-20=0
a = 6; b = 2; c = -20;
Δ = b2-4ac
Δ = 22-4·6·(-20)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-22}{2*6}=\frac{-24}{12} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+22}{2*6}=\frac{20}{12} =1+2/3 $
| 3v+6-4=17 | | x/2x=50 | | −15x+5=-10x+25 | | x+x=95+x=25=180 | | x+19+x19=x+29 | | 8x=2*(x+24) | | 222=128-y | | 28/x+7=7/8 | | (2x+5)^1/2=4 | | -2x+3=-6x+19 | | 6x+7x=360 | | K=8k+18k | | 6x+7x=36- | | 4m−6=6 | | 5*(x+2)=x+34 | | 3x+8=2(x+6 | | 8x-3(2x-4)=3(x-6 | | 169-10x=99-3x | | 11x+23=7 | | 25-u=242 | | 6x-4+3x=4x-3+6 | | 1=d−3 | | 4f+-5+2=–6+-2+-7f | | 6x-4=3x+26 | | -23x+21=-15 | | 37.5-3.5x=4x-30 | | X+4x-1=7x+3 | | 3x-(4+2x)=-(-3x+4)+2 | | w3= 3 | | 3x-(4+2x0=-(-3x+4)+2 | | 6x+40/2=180 | | 3/4x+5/8=8 |